91ÑÇÉ«´«Ã½

Health Observance

Cervical Health Awareness Month

Vaishnavi Muralikrishnan
Jan. 4, 2021

Cervical cancer is the most preventable cancer in women, yet more than 300,000 women worldwide lost their lives to it in 2018, . Today, on account of Cervical Cancer Awareness Month, I present to you some facts about cervical cancer and highlights of recent research on it.

What is cervical cancer?

It is a cancer of the cells of the cervix — the lower part of the uterus connecting the vagina. The most common type of cervical cancer is squamous cell carcinoma, which originates from the cells lining the ectocervix (part of the cervix extending outward to the vagina) and accounts for about 80% of cervical cancers, .

What causes cervical cancer?

The majority of cervical cancer cases are caused by , or HPV, infection. There are more than 100 types of HPV, of which 14 are known to cause cancer, according to the WHO. Specifically, HPV types 16 and 18 are responsible for 70% of cervical cancers and precancerous lesions.

HPV is a sexually transmitted virus that spreads through skin-to-skin contact and can lead to cervical cancer even decades after being first transmitted. In addition to cervical cancer, HPV infection is also linked to cancers in the vulva, vagina, anus and penis. HPV also causes cancer in the mouth and throat through oral sex. It is important to know that the risk for cervical cancer by HPV infection also exists for individuals with a single sexual partner.

According to American Cancer Society, cervical cancer diagnosis is highly common in women between the ages 35 and 44, and it is highly uncommon in women under 20 years of age.

The CDC reports that the risk for HPV-associated cervical cancer is higher in Hispanic and Black women, possibly due lack of access to screening or treatment.

How to prevent cervical cancer

Cervical cancer can be prevented by getting vaccinated against HPV. The CDC suggests that the HPV vaccination is most effective in females aged 11 to 26. Girls around 11 or 12 require two doses of the vaccine at least six months apart. Teens and young adults who start the vaccination series before 26 require three doses for effective protection.

Since cervical cancer does not show any symptoms in the early stages, the CDC recommends that women aged 21 through 65 get screened for precancerous lesions by having a Papanicolaou (Pap) smear every three years. During a Pap smear, a gynecologist, physician or nurse practitioner collects cells from the cervix that are then sent to a laboratory, where a pathologist examines them for any precancerous or cancerous lesions. The risk for cervical cancer is greatly reduced in women who undergo regular screenings because of the increased chance at early diagnosis.

What is the treatment for cervical cancer?

The most common treatment strategies for cervical cancer include surgery, chemotherapy and radiation. Surgery can include killing cancerous tissue with a laser or cutting it out. Radiation therapy uses high-energy X-rays to kill cancer cells, and it may be a part of the main treatment regimen or used for cancer that has returned or spread to different organs. Chemotherapy involves the administration of anticancer drugs orally or into the vein of the patients. The gynecologic oncologist may also enroll patients in clinical trials for novel therapies, but these are less common than the other methods of treatment.

What does recent research on cervical cancer tell us?

Below is a collection of some cervical cancer research articles published in 91ÑÇÉ«´«Ã½ journals.

Uncovering the factors involved in the survival of cancer cells: Cervical cancer patients often develop resistance to chemotherapy, which leads to cancer recurrence and even death. The protein PACS-1 is a sorting protein involved in transporting cargo from Golgi complexes to different cell organelles. It is abundantly expressed in cervical cancer cells compared with healthy cells. in the Journal of Biological Chemistry showed that PACS-1 expression is controlled by micro-RNAs, hsa-miR-34a and hsa-miR-449a. MicroRNAs are small noncoding RNAs that regulate gene expression in mammalian cells. This study suggests that absence of expression of these two miRNAs leads to PACS-1 overexpression, resulting in the development of chemotherapy-resistant tumors.

Understanding the spread of cancer cells: Cancer cells are capable of detaching from a surface and spreading to distant organs. This process is known as metastasis, and it requires the cells to grow without attachment to a surface (anchorage-independent growth). This revealed a novel mechanism of activation of Akt signaling cascade responsible for anchorage-independent growth . Cool-associated tyrosine-phosphorylated protein 1, or Cat-1, interacts with binding partner paxillin to activate Akt signaling, promoting anchorage-independent growth. This study advances our understanding of how cervical cancer spreads.

Identifying biomarkers in the blood to detect cervical cancer: Diagnosis of cervical cancer currently relies on Pap smear to test for precancerous lesions in women who have tested positive for HPV infection. But scientists are on a quest for more accurate and reliable biomarkers. published in the journal Molecular & Cellular Proteomics revealed a panel of 11 biomarkers in the plasma of patients with invasive cervical cancer. This biomarker signature could improve diagnosis and provide a reliable and noninvasive screening method.

Enzymes in cervical cancer signaling: 1-acylglycerol3-phosphate-O-acyltransferase isoform 11, or AGPAT11 for short, is an enzyme involved in the production of phosphatidic acid, or PA, in cells. PA is a signaling molecule that activates cascades that promote survival and anchorage-independent growth of cancer cells. Scientists identified that AGPAT11 is highly active in patients with advanced cervical cancer, suggesting that it may be a biomarker for the severity of cancer. in the Journal of Lipid Research.

Enjoy reading 91ÑÇÉ«´«Ã½ Today?

Become a member to receive the print edition four times a year and the digital edition monthly.

Learn more
Vaishnavi Muralikrishnan

Vaishnavi Muralikrishnan is a Ph.D. candidate at Indiana University. She studies ovarian cancer stem cells in the laboratory of Kenneth Nephew. She is passionate about science communication and enjoys her naps and drinking chai.

Get the latest from 91ÑÇÉ«´«Ã½ Today

Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.

Latest in Science

Science highlights or most popular articles

Targeting toxins to treat whooping cough
Journal News

Targeting toxins to treat whooping cough

May 1, 2025

Scientists find that liver protein inhibits of pertussis toxin, offering a potential new treatment for bacterial respiratory disease. Read more about this recent study from the Journal of Biological Chemistry.

Elusive zebrafish enzyme in lipid secretion
Journal News

Elusive zebrafish enzyme in lipid secretion

May 1, 2025

Scientists discover that triacylglycerol synthesis enzyme drives lipoproteins secretion rather than lipid droplet storage. Read more about this recent study from the Journal of Biological Chemistry.

Scientists identify pan-cancer biomarkers
Journal News

Scientists identify pan-cancer biomarkers

April 30, 2025

Researchers analyze protein and RNA data across 13 cancer types to find similarities that could improve cancer staging, prognosis and treatment strategies. Read about this recent article published in Molecular & Cellular Proteomics.

New mass spectrometry tool accurately identifies bacteria
Journal News

New mass spectrometry tool accurately identifies bacteria

April 30, 2025

Scientists develop a software tool to categorize microbe species and antibiotic resistance markers to aid clinical and environmental research. Read about this recent article published in Molecular & Cellular Proteomics.

New tool matches microbial and metabolic metaproteomic data
Journal News

New tool matches microbial and metabolic metaproteomic data

April 30, 2025

Scientists develop a bioinformatics program that maps omics data to metabolic pathways. Read about this recent article published in Molecular & Cellular Proteomics

Meet Paul Shapiro
Interview

Meet Paul Shapiro

April 29, 2025

Learn how the JBC associate editor went from milking cows on a dairy farm to analyzing kinases in the lab.