91ÑÇÉ«´«Ã½

Journal News

How Salmonella runs hot and cold

Elizabeth Stivison
Feb. 7, 2023

“Don’t eat raw cookie dough!” is something adults often say to children. One reason we wash vegetables, cook meat and — usually — don’t eat raw cookie dough is to avoid getting infected with pathogens like Salmonella. 

As familiar as the name of this bacteria is, there’s quite a bit we don’t know about how it grows and spreads. One thing complicating our understanding is that Salmonella survives in disparate conditions. We have a handle on its life when it gets into our bodies, but it also must survive on crops in cooler outdoor temperatures and even in the fridge.

Researchers in Osnabrück, Germany, recently published in the journal Molecular & Cellular Proteomics about how the Salmonella proteome changes under different temperatures and nutrient conditions, opening the door to developing more efficient prevention techniques. 

To understand how Salmonella survives, they grew it at temperatures from about as cold as a refrigerator up to as warm as a human body. They also varied the available nutrients. Then, after monitoring growth rate and other factors, they collected samples from all the growth conditions, extracted the proteins and analyzed them by mass spectrometry to get a picture of each one’s entire proteome. 

They found tons of data, which they’ve made available for other researchers, and started characterizing it with broad strokes. More pathogenic factors were expressed at body temperature. Heat and cold stress response proteins changed across the conditions, as did proteins regulating gene expression and metabolism: Glycolysis enzymes are less abundant at colder temperatures, so the Salmonella may be upregulating their citric acid cycle to compensate. 

When looking at the proteomic data for the cooler temperatures, they made unexpected finds, according to first author Laura Elpers. “It was a surprise to identify flagella,” the long thin structures bacteria use like a propeller for locomotion, she said.

In E. coli, another common foodborne pathogen, flagella are expressed only at body temperature, not colder temperatures, and researchers thought it would be the same for Salmonella. “At first I thought, ‘that cannot be,”’ Elpers said. “I thought the proteomics was messed up, so we checked them.”

Elpers stained her cells grown in cooler temperatures for flagella proteins and looked under a 100x microscope. “I was quite excited when I did the staining and could see the flagella,” she said.

The team plans to look further into the flagella — it appears that they may be structured differently at cooler temperatures than at body temperature and may move differently. At body temperature, the team could see the Salmonella swimming around quickly, while at cooler temperatures the bacteria creep and crawl slowly. 

“What is the flagella doing at the lower temperature?” asked Michael Hensel, the lead author. “The temperature is similar to conditions in agriculture — prior to climate change. It’s a bacterial pathogen that hasn’t been considered to be motile at that temp. But it may actually be able to reach new hosts and spread.”

Enjoy reading 91ÑÇÉ«´«Ã½ Today?

Become a member to receive the print edition four times a year and the digital edition monthly.

Learn more
Elizabeth Stivison

Elizabeth Stivison is a careers columnist for 91ÑÇÉ«´«Ã½ Today and an assistant laboratory professor at Middlebury College.

Get the latest from 91ÑÇÉ«´«Ã½ Today

Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.

Latest in Science

Science highlights or most popular articles

Bacterial enzyme catalyzes body odor compound formation
Journal News

Bacterial enzyme catalyzes body odor compound formation

June 27, 2025

Researchers identify a skin-resident Staphylococcus hominis dipeptidase involved in creating sulfur-containing secretions. Read more about this recent Journal of Biological Chemistry paper.

Neurobiology of stress and substance use
Profile

Neurobiology of stress and substance use

June 19, 2025

MOSAIC scholar and proud Latino, Bryan Cruz of Scripps Research Institute studies the neurochemical origins of PTSD-related alcohol use using a multidisciplinary approach.

Pesticide disrupts neuronal potentiation
Journal News

Pesticide disrupts neuronal potentiation

June 17, 2025

New research reveals how deltamethrin may disrupt brain development by altering the protein cargo of brain-derived extracellular vesicles. Read more about this recent Molecular & Cellular Proteomics article.

A look into the rice glycoproteome
Journal News

A look into the rice glycoproteome

June 17, 2025

Researchers mapped posttranslational modifications in Oryza sativa, revealing hundreds of alterations tied to key plant processes. Read more about this recent Molecular & Cellular Proteomics paper.

Proteomic variation in heart tissues
Journal News

Proteomic variation in heart tissues

June 17, 2025

By tracking protein changes in stem cell–derived heart cells, researchers from Cedars-Sinai uncovered surprising diversity — including a potential new cell type — that could reshape how we study and treat heart disease.

Parsing plant pigment pathways
Webinar

Parsing plant pigment pathways

June 13, 2025

Erich Grotewold of Michigan State University, an 91ÑÇÉ«´«Ã½ Breakthroughs speaker, discusses his work on the genetic regulation of flavonoid biosynthesis.