91ÑÇÉ«´«Ã½

Lipid News

Novel eicosanoids from the COX-2 reaction: 5-hydroxy-prostaglandins

Fumie Nakashima Claus Schneider
By Fumie Nakashima and Claus Schneider
June 8, 2022

How are novel bioactive lipids discovered?

The traditional approach has been to purify and identify the compound that mediates a biologic effect of interest, and in some cases, the novel compound is an eicosanoid, a bioactive lipid derived from oxygenation of arachidonic acid. Prostaglandins were discovered via that route in the 1950s and ’60s and then cysteinyl-leukotrienes, the long-coveted slow-reacting substance of anaphylaxis, or SRS-A, in the late 1970s. Prostaglandins mediate pain, fever and inflammation and are targets of nonsteroidal anti-inflammatory drugs like aspirin and ibuprofen. Cysteinyl-leukotrienes are bronchoconstrictors and targets in the treatment of asthma.

5-Hydroxy-prostaglandins are formed when COX-2 reacts with 5-HETE, a 5-LOX metabolite of arachidonic acid.
Claus Schneider & Fumie Nakashima
5-Hydroxy-prostaglandins are formed when COX-2 reacts with 5-HETE, a 5-LOX metabolite of arachidonic acid.

Other eicosanoids were discovered before their biologic function was known because they were formed abundantly or detected readily in a biochemical transformation or as products formed from radiolabeled arachidonic acid added to cells and tissues. Lipoxins and other lipoxygenase products are examples of eicosanoids that were identified biosynthetically and structurally prior to knowing their biological function. It took some time before researchers discovered that lipoxins and their eicosapentaenoic acid– and docosahexaenoic acid–derived analogs help resolve inflammation, a role quite different from the proinflammatory prostaglandins and leukotrienes.

Another approach to finding novel eicosanoids is to test novel substrates for known biosynthetic enzymes such as cyclooxygenases. Ethanolamine and glyceryl prostaglandins were discovered that way. The same approach led to testing whether 5-hydroxyeicosatetraenoic acid, or HETE, the 5-lipoxygenase-derived 5-hydroxy derivative of arachidonic acid, was a substrate for the cyclooxygenase, or COX, enzymes. That made some sense since the 5,6-ene is the only one of the four double bonds of arachidonic acid not involved in the transformation to the endoperoxide prostaglandin H2, or PGH2. It is shifted to a 6,7 trans-ene in 5-HETE.

In 2006, that 5-HETE was a substrate for COX-2 (but not for COX-1) and yielded an endoperoxide in which the typical five-membered prostanoid ring was expanded to a seven-membered ring by insertion of molecular oxygen. This was an unexpected product, since the formation of 5-hydroxy-prostaglandins, or 5-OH-PGs, would have seemed more intuitive.

shows that 5-OH-PGE2 and 5-OH-PGD2 actually are formed in the COX-2 reaction with 5-HETE. that the enzyme formed 5-OH-PGH2 as the true enzymatic product, which spontaneously rearranges to 5-OH-PGE2 and -D2, in parallel to a seven-membered endoperoxide that rearranges to hemiketal eicosanoids HKE2 and HKD2.

Two aspects of 5-hydroxy-prostaglandins are worth noting. First, they are much less stable than their traditional prostaglandin counterparts PGE2 and PGD2. While we detected them in a carefully analyzed biochemical reaction, we did not detect them in activated human leukocytes unless the cells were treated with sodium borohydride to reduce the unstable beta-hydroxy-cyclopentanone moiety to the stable 1,3-diol such as that present in PGF2a and isoprostanes. Second, their inability to activate traditional prostanoid receptors (all were tested except DP2) suggests their biological roles may be unique and distinct from traditional prostaglandins.

Consistent with their biosynthesis combining elements of the pro-inflammatory leukotrienes and prostaglandins, we might speculate that 5-OH-prostaglandins have a role in inflammation, but researchers do not yet know what exactly that may be. The biological effects of the novel 5-hydroxy-prostaglandins have yet to be discovered.

Want more lipid research news?

Check out , a curated collection of hot picks from the world of lipid research, brought to you by .

Enjoy reading 91ÑÇÉ«´«Ã½ Today?

Become a member to receive the print edition four times a year and the digital edition monthly.

Learn more
Fumie Nakashima
Fumie Nakashima

Fumie Nakashima is an assistant professor in Food and Biodynamics at Nagoya University Graduate School of Bioagricultural Sciences.

Claus Schneider
Claus Schneider

Claus Schneider is a professor of pharmacology at the Vanderbilt University School of Medicine.

Related articles

Elusive zebrafish enzyme in lipid secretion
Isabel Casas & Emily Ulrich
From the journals: JLR
Jeyashree Alagarsamy
Targeting cardiolipin modification in a genetic disorder
Arianna F. Anzmann, Olivia Sniezek & Hilary Vernon
At the interface
Lina M. Obeid & Michael J. Pulkoski-Gross

Get the latest from 91ÑÇÉ«´«Ã½ Today

Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.

Latest in Science

Science highlights or most popular articles

Bacterial enzyme catalyzes body odor compound formation
Journal News

Bacterial enzyme catalyzes body odor compound formation

June 27, 2025

Researchers identify a skin-resident Staphylococcus hominis dipeptidase involved in creating sulfur-containing secretions. Read more about this recent Journal of Biological Chemistry paper.

Neurobiology of stress and substance use
Profile

Neurobiology of stress and substance use

June 19, 2025

MOSAIC scholar and proud Latino, Bryan Cruz of Scripps Research Institute studies the neurochemical origins of PTSD-related alcohol use using a multidisciplinary approach.

Pesticide disrupts neuronal potentiation
Journal News

Pesticide disrupts neuronal potentiation

June 17, 2025

New research reveals how deltamethrin may disrupt brain development by altering the protein cargo of brain-derived extracellular vesicles. Read more about this recent Molecular & Cellular Proteomics article.

A look into the rice glycoproteome
Journal News

A look into the rice glycoproteome

June 17, 2025

Researchers mapped posttranslational modifications in Oryza sativa, revealing hundreds of alterations tied to key plant processes. Read more about this recent Molecular & Cellular Proteomics paper.

Proteomic variation in heart tissues
Journal News

Proteomic variation in heart tissues

June 17, 2025

By tracking protein changes in stem cell–derived heart cells, researchers from Cedars-Sinai uncovered surprising diversity — including a potential new cell type — that could reshape how we study and treat heart disease.

Parsing plant pigment pathways
Webinar

Parsing plant pigment pathways

June 13, 2025

Erich Grotewold of Michigan State University, an 91ÑÇÉ«´«Ã½ Breakthroughs speaker, discusses his work on the genetic regulation of flavonoid biosynthesis.