91ÑÇÉ«´«Ã½

News

Why hydroxychloroquine and chloroquine don't block coronavirus infection of human lung cells

Katherine  Seley-Radtke
By Katherine Seley-Radtke
Aug. 8, 2020

The big idea

on July 22 that further underscores earlier studies that show that neither the malaria drug hydroxychloroquine nor chloroquine prevents SARS-CoV-2 – the virus that causes COVID-19 – from replicating in lung cells.

Hydroxychloroquine-445x318.jpg
Jovan Gec/Wikimedia Commons
This simple ball and stick model represents an uncharged molecule of hydroxychloroquine, a malaria drug that some have touted as a treatment for COVID-19.

Most Americans probably remember that hydroxychloroquine became the focus of numerous clinical trials following the president’s statement that At the time, he appeared to base this statement on anecdotal stories, as well as that hydroxychloroquine seemed to help patients with COVID-19 recover.

Many in the antiviral field, including , questioned the validity of both, and in fact, one of the papers was later that published it.

Since then, HQC has had a bumpy ride. It was for emergency use. The FDA its decision when . That news brought many clinical trials to a halt. Regardless, some scientists continued to study it in hopes of finding a cure for this deadly virus.

How the work was done

was carried out by scientists in Germany who tested HCQ on a collection of different cell types to figure out why this drug doesn’t prevent the virus from infecting humans.

Their findings clearly show that that HQC can block the coronavirus from infecting kidney cells from the African green monkey. But it does not inhibit the virus in human lung cells – the primary site of infection for the SARS-CoV-2 virus.

In order for the virus to enter a cell, it can do so by two mechanisms - one, when the and inserts its genetic material into the cell. In the second mechanism, the virus is absorbed into some special compartments in cells called endosomes.

Depending on the cell type, some, like kidney cells, need an enzyme called cathepsin L for the virus to successfully infect them. In lung cells, however, an enzyme called TMPRSS2 (on the cell surface) is necessary. Cathepsin L requires an acidic environment to function and allow the virus to infect the cell, while TMPRSS2 does not.

In the green monkey kidney cells, both hydroxychloroquine and chloroquine decrease the acidity, which then disables the cathepsin L enzyme, blocking the virus from infecting the monkey cells. In human lung cells, which have very low levels of cathepsin L enzyme, the virus uses the enzyme TMPRSS2 to enter the cell. But because that enzyme is not controlled by acidity, neither HCQ and CQ can block the SARS-CoV-2 from infecting the lungs or stop the virus from replicating.

Why it matters

This matters for several reasons. One, much time and money has been spent studying a drug that many scientists said from the very beginning was not going to be effective in killing the virus.

The second reason is that the studies that have reported antiviral activity for hydroxychloroquine were not in epithelial lung cells. Thus, their results are not relevant to properly studying SARS-CoV-2 infections in humans.

What’s next?

As scientists proceed with investigating new drugs as well as trying to , like hydroxychloroquine, it is critical that researchers take the time to think about their study design.

In short, those of us involved in antiviral drug development should all take a lesson from this study. It is important not only to focus our efforts on pursuing drugs that will directly shut down viral replication, but also to study the virus in the primary site of infection.The Conversation

The Research Brief is a short take about interesting academic work.

This article is republished from under a Creative Commons license. Read the .

[Deep knowledge, daily. .]

Enjoy reading 91ÑÇÉ«´«Ã½ Today?

Become a member to receive the print edition four times a year and the digital edition monthly.

Learn more
Katherine  Seley-Radtke
Katherine Seley-Radtke

Katherine Seley-Radtke is a professor of chemistry and biochemistry and president-elect of the International Society for Antiviral Research at the University of Maryland, Baltimore County.

Related articles

Upcoming opportunities
91ÑÇÉ«´«Ã½ Today Staff
2025 91ÑÇÉ«´«Ã½ election results
Marissa Locke Rottinghaus
2025 PROLAB awardees announced
Marissa Locke Rottinghaus
Yu receives early career research award
91ÑÇÉ«´«Ã½ Staff

Get the latest from 91ÑÇÉ«´«Ã½ Today

Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.

Latest in Science

Science highlights or most popular articles

Bacterial enzyme catalyzes body odor compound formation
Journal News

Bacterial enzyme catalyzes body odor compound formation

June 27, 2025

Researchers identify a skin-resident Staphylococcus hominis dipeptidase involved in creating sulfur-containing secretions. Read more about this recent Journal of Biological Chemistry paper.

Neurobiology of stress and substance use
Profile

Neurobiology of stress and substance use

June 19, 2025

MOSAIC scholar and proud Latino, Bryan Cruz of Scripps Research Institute studies the neurochemical origins of PTSD-related alcohol use using a multidisciplinary approach.

Pesticide disrupts neuronal potentiation
Journal News

Pesticide disrupts neuronal potentiation

June 17, 2025

New research reveals how deltamethrin may disrupt brain development by altering the protein cargo of brain-derived extracellular vesicles. Read more about this recent Molecular & Cellular Proteomics article.

A look into the rice glycoproteome
Journal News

A look into the rice glycoproteome

June 17, 2025

Researchers mapped posttranslational modifications in Oryza sativa, revealing hundreds of alterations tied to key plant processes. Read more about this recent Molecular & Cellular Proteomics paper.

Proteomic variation in heart tissues
Journal News

Proteomic variation in heart tissues

June 17, 2025

By tracking protein changes in stem cell–derived heart cells, researchers from Cedars-Sinai uncovered surprising diversity — including a potential new cell type — that could reshape how we study and treat heart disease.

Parsing plant pigment pathways
Webinar

Parsing plant pigment pathways

June 13, 2025

Erich Grotewold of Michigan State University, an 91ÑÇÉ«´«Ã½ Breakthroughs speaker, discusses his work on the genetic regulation of flavonoid biosynthesis.