Probing for a ketone body鈥檚 link to age-related inflammation
Glucose levels in the blood and cells are regulated by the pancreatic hormones insulin and glucagon. While insulin helps cells to take in glucose and reduces blood glucose levels, glucagon initiates the conversion of stored glycogen to glucose.
When glucose is depleted, insulin levels decrease but glucagon levels remain stable. In cells, this triggers the release of fats, which are converted into different types of ketone bodies by the enzyme 3-Hydroxy-3-methylglutaryl-CoA, or HMGCL, in the liver. One of these ketone bodies, beta-hydroxybutyrate, or BHB, can be an energy source for the brain and skeletal muscle when blood glucose is low. Several studies have also shown that BHB also plays a role in the signaling pathways of lipolysis and aging.

Emily Goldberg, a researcher at the University of California, San Francisco, studies NOD-, LRR- and pyrin domain-containing protein 3, known as NLRP3, and how this protein interacts with BHB. NLRP3 helps to regulate the innate immune system and inflammatory signaling as well as age-related inflammation.
“We had previously shown that the NLRP3 drives age-related inflammation and that the ketone body BHB inhibits NLRP3 activation in macrophages and neutrophils, so we hypothesized that BHB might inhibit age-related inflammation,” Goldberg said.
Although most ketone bodies are produced in liver cells, researchers hypothesize that they also can be synthesized by cells from other tissues, including macrophages and neutrophils.
To test their hypothesis about BHB, Goldberg and a team of researchers from UCSF and the Yale School of Medicine used mice from which they deleted the gene that encodes the HMGCL enzyme. This helped them prevent ketone body synthesis in specific cell types, namely macrophages and neutrophils.
“Making the mice to test this hypothesis and planning the experiments to have enough aged mice was the most difficult part of the study,” Goldberg said.
The team compared the role of liver-based ketone body formation with that of cell-specific ketone body formation in age-related inflammation.
In published in the Journal of Biological Chemistry, the researchers point out that the liver is the only organ that can produce enough ketone bodies to maintain blood glucose levels, and neutrophil-based ketogenesis does not regulate age-related metabolic health.
“Exogenous ketones are likely responsible for controlling innate immune inflammation in aging,” Goldberg said, “Macrophages can metabolize acetoacetate, but not BHB and this is important for their function. But why innate immune cells take up BHB remains unclear.”
The group only used a single mouse strain; using other strains and different mutations in different enzymes in the ketone body formation pathway could show different results. Goldberg said that next they will consider all these limitations and aim to determine why innate immune cells take up BHB.
Enjoy reading 91亚色传媒 Today?
Become a member to receive the print edition four times a year and the digital edition monthly.
Learn moreGet the latest from 91亚色传媒 Today
Enter your email address, and we鈥檒l send you a weekly email with recent articles, interviews and more.
Latest in Science
Science highlights or most popular articles

Targeting toxins to treat whooping cough
Scientists find that liver protein inhibits of pertussis toxin, offering a potential new treatment for bacterial respiratory disease. Read more about this recent study from the Journal of Biological Chemistry.

Elusive zebrafish enzyme in lipid secretion
Scientists discover that triacylglycerol synthesis enzyme drives lipoproteins secretion rather than lipid droplet storage. Read more about this recent study from the Journal of Biological Chemistry.

Scientists identify pan-cancer biomarkers
Researchers analyze protein and RNA data across 13 cancer types to find similarities that could improve cancer staging, prognosis and treatment strategies. Read about this recent article published in Molecular & Cellular Proteomics.

New mass spectrometry tool accurately identifies bacteria
Scientists develop a software tool to categorize microbe species and antibiotic resistance markers to aid clinical and environmental research. Read about this recent article published in Molecular & Cellular Proteomics.

New tool matches microbial and metabolic metaproteomic data
Scientists develop a bioinformatics program that maps omics data to metabolic pathways. Read about this recent article published in Molecular & Cellular Proteomics

Meet Paul Shapiro
Learn how the JBC associate editor went from milking cows on a dairy farm to analyzing kinases in the lab.