91亚色传媒

News

Revealing the biology of insulin production

UMich researchers find modification crucial for translating mRNA into the protein
Morgan Sherburne
By Morgan Sherburne
Sept. 17, 2023

The discovery of insulin has saved the lives of millions of people with diabetes worldwide, but little is known about the first step of insulin synthesis.

Researchers at the University of Michigan have uncovered part of this mystery. Examining messenger RNAs involved in the production of insulin in fruit flies, they found that a chemical tag on the mRNA is crucial to translating the insulin mRNA into the protein insulin. The alteration of this chemical tag can affect how much insulin is produced.

Insulin consists of two peptide chains, linked with two disulphide bridges shown in yellow (the third disulfide bridge has no role in the linkage).
Wikimedia Commons user
Insulin consists of two peptide chains, linked with two disulphide bridges shown in yellow (the third disulfide bridge has no role in the linkage).

The study, conducted by researchers and , is published in the journal .

An organism carries DNA—its genes—in each cell of its bodies. Genes are blocks of information that get transcribed into proteins via another molecule called messenger RNAs. These mRNAs are photocopies of DNA—leaving the original DNA untouched—that ferry this protein information into the cytoplasm of cells, where protein is synthesized. The mRNAs are decorated with small molecules called “tags.” These tags can modify how RNAs function and how proteins are produced.

“I like to think of RNA as a Christmas tree,” said Wilinski, a postdoctoral researcher in Dus’ lab in the U-M Department of Molecular, Cellular and Developmental Biology. “Christmas trees are beautiful in the wilderness, but when you bring them inside and put ornaments on them, that decoration is what makes you feel like the tree is part of the season. Same thing with RNA. These decorations on RNA really enhance the way RNA is regulated.”

Studying insulin production in humans or mammals is difficult. In humans, the pancreas is situated behind the liver. It doesn’t regenerate well, and it can’t be sampled in live subjects. But in flies, their insulin cells are actually in their brains, function like neurons, and are physically accessible to researchers. In fruit flies, the researchers looked at a tag called RNA N-6 adenosine methylation, or m6A.

To study the m6A tag, the researchers first identified the RNAs that have the tag. Then they labeled insulin cells with a fluorescent molecule, and used confocal microscopy to visualize how much insulin is produced by the insulin cell. They did this under two conditions: first, they knocked out the m6A enzyme, responsible for decorating the mRNA with m6A tags, in insulin cells. Second, they removed the m6A tags by using CRISPR, a technology used to edit DNA, to mutate the modified As.

In both cases, the flies’ ability to produce insulin was greatly reduced.

“We found that this photocopy of the DNA for insulin, this mRNA, had a specific tag that, when it is present, a ton of the insulin hormone is made,” said Dus, associate professor of molecular, cellular and developmental biology. “But without the signal, flies had much less insulin and developed hallmarks of diabetes.”

This chemical tag is conserved—or unchanged—in fish, mice and humans.

“So it’s likely that insulin production is also regulated through this kind of mechanism in humans,” Wilinski said. “There is an obesity and diabetes epidemic not just in the United States, but across the world. Our finding is another bit of evidence about how this disease happens.”

Dus says the discovery fleshes out the understanding of the biology of insulin and the physiology of diseases of energy homeostasis. Low levels of chemical tags have been observed in people with Type 2 diabetes. Restoring the levels of these tags may also help with combating diabetes and metabolic disease, she says.

“We have known about insulin as a treatment for a hundred years. We have discovered so much about how insulin is made,” Dus said. “But we know so little about the very basic molecular biology of insulin and how it is regulated. That’s why I think this work is important—it refocuses on insulin, the gene and all the things we still have to discover about it.”

This article was first published by the University of Michigan.

Enjoy reading 91亚色传媒 Today?

Become a member to receive the print edition four times a year and the digital edition monthly.

Learn more
Morgan Sherburne
Morgan Sherburne

Morgan Sherburne is a senior public relations representative at the University of Michigan. She has a master’s in science writing from the Massachusetts Institute of Technology, a master’s of fine arts in nonfiction from the University of Minnesota, and bachelor’s in literature and creative writing from Grand Valley State University.

Related articles

From the journals: JBC
Emily Ulrich
From the Journals: JBC
Emily Ulrich
From the Journals: MCP
Indumathi Sridharan
From the journals: JBC
Emily Ulrich

Get the latest from 91亚色传媒 Today

Enter your email address, and we鈥檒l send you a weekly email with recent articles, interviews and more.

Latest in Science

Science highlights or most popular articles

Targeting toxins to treat whooping cough
Journal News

Targeting toxins to treat whooping cough

May 1, 2025

Scientists find that liver protein inhibits of pertussis toxin, offering a potential new treatment for bacterial respiratory disease. Read more about this recent study from the Journal of Biological Chemistry.

Elusive zebrafish enzyme in lipid secretion
Journal News

Elusive zebrafish enzyme in lipid secretion

May 1, 2025

Scientists discover that triacylglycerol synthesis enzyme drives lipoproteins secretion rather than lipid droplet storage. Read more about this recent study from the Journal of Biological Chemistry.

Scientists identify pan-cancer biomarkers
Journal News

Scientists identify pan-cancer biomarkers

April 30, 2025

Researchers analyze protein and RNA data across 13 cancer types to find similarities that could improve cancer staging, prognosis and treatment strategies. Read about this recent article published in Molecular & Cellular Proteomics.

New mass spectrometry tool accurately identifies bacteria
Journal News

New mass spectrometry tool accurately identifies bacteria

April 30, 2025

Scientists develop a software tool to categorize microbe species and antibiotic resistance markers to aid clinical and environmental research. Read about this recent article published in Molecular & Cellular Proteomics.

New tool matches microbial and metabolic metaproteomic data
Journal News

New tool matches microbial and metabolic metaproteomic data

April 30, 2025

Scientists develop a bioinformatics program that maps omics data to metabolic pathways. Read about this recent article published in Molecular & Cellular Proteomics

Meet Paul Shapiro
Interview

Meet Paul Shapiro

April 29, 2025

Learn how the JBC associate editor went from milking cows on a dairy farm to analyzing kinases in the lab.