Knocking out drug side effects with supercomputing
Psychedelic drugs could be effective in treating psychiatric disorders such as depression and post-traumatic stress disorder, but medical use of these drugs is limited by the hallucinations they cause.
"What if we could redesign drugs to keep their benefits while eliminating their unwanted side effects?" asked Ron Dror, an associate professor of computer science at . Dror's lab is developing computer simulations using the world's most powerful and smartest supercomputer for open science, the supercomputer at the (OLCF), to help researchers do just that.
In an , Dror's team describes discoveries that could be used to minimize or eliminate side effects in a broad class of drugs that target G protein-coupled receptors, or GPCRs. GPCRs are proteins found in all human cells. Lysergic acid diethylamide (LSD) molecules and other psychedelics attach to GPCRs—but so do about a third of all prescription drugs, including medications for allergies, blood pressure, and pain. So important is this molecular mechanism that Stanford professor Brian Kobilka shared the 2012 Nobel Prize in Chemistry for his role in discovering how GPCRs work.
When a drug molecule attaches to a GPCR, it can cause multiple simultaneous changes in the cell. Some of these changes might contribute to a drug's beneficial effects, but others can lead to less-than-desirable or even dangerous effects.

Using the OLCF's Summit and a computing cluster at Stanford, the team compared computer simulations of a GPCR with different molecules attached. Dror's team was then able to pinpoint how a drug molecule can alter the way a GPCR's atoms are ordered. Changing the protein's atomic arrangement affects the protein shape and can allow a drug molecule to deliver beneficial effects without side effects—something that has remained mysterious until now. Based on these results, the researchers designed new molecules that were shown computationally to cause beneficial changes in cells without unwanted changes. Although these designed molecules are not yet suitable for use as drugs in humans, they represent a crucial first step toward developing side-effect-free drugs.
Today, researchers typically test millions of drug candidates—first in test tubes, then in animals, and finally in humans—hoping to find a "magic" molecule that is both effective and safe, meaning that any side effects are tolerable. This massive undertaking typically takes many years and costs billions of dollars, and the resulting drug often still has some frustrating side effects.
The discoveries by Dror's team promise to allow researchers to bypass much of that trial-and-error work so that they can bring promising drug candidates into animal and human trials faster and with a greater likelihood of success.
Stanford postdoctoral scholar Carl-Mikael Suomivuori and former graduate student Naomi Latorraca led an 11-member team that included Robert Lefkowitz of , with whom Kobilka shared the Nobel Prize, and Andrew Kruse of , Kobilka's former student.
"In addition to revealing how a drug molecule could cause a GPCR to trigger only beneficial effects, we've used these findings to design molecules with desired physiological properties, which is something that many labs have been trying to do for a long time," Dror said. "Armed with our results, researchers can begin to imagine new and better ways to design drugs that retain their effectiveness while posing fewer dangers."
Dror hopes that such research will eventually eliminate the dangerous side effects of drugs used to treat a wide variety of diseases, including heart conditions, psychiatric disorders, and chronic pain.
The team's simulations were performed under a computing allocation in the Innovative and Novel Computational Impact on Theory and Experiment program at the OLCF, a (DOE) User Facility located at DOE's .
This story was at Stanford University and adapted by Rachel Marisa Harken at Oak Ridge National Laboratory.
Enjoy reading 91亚色传媒 Today?
Become a member to receive the print edition four times a year and the digital edition monthly.
Learn moreGet the latest from 91亚色传媒 Today
Enter your email address, and we鈥檒l send you a weekly email with recent articles, interviews and more.
Latest in Science
Science highlights or most popular articles

Targeting toxins to treat whooping cough
Scientists find that liver protein inhibits of pertussis toxin, offering a potential new treatment for bacterial respiratory disease. Read more about this recent study from the Journal of Biological Chemistry.

Elusive zebrafish enzyme in lipid secretion
Scientists discover that triacylglycerol synthesis enzyme drives lipoproteins secretion rather than lipid droplet storage. Read more about this recent study from the Journal of Biological Chemistry.

Scientists identify pan-cancer biomarkers
Researchers analyze protein and RNA data across 13 cancer types to find similarities that could improve cancer staging, prognosis and treatment strategies. Read about this recent article published in Molecular & Cellular Proteomics.

New mass spectrometry tool accurately identifies bacteria
Scientists develop a software tool to categorize microbe species and antibiotic resistance markers to aid clinical and environmental research. Read about this recent article published in Molecular & Cellular Proteomics.

New tool matches microbial and metabolic metaproteomic data
Scientists develop a bioinformatics program that maps omics data to metabolic pathways. Read about this recent article published in Molecular & Cellular Proteomics

Meet Paul Shapiro
Learn how the JBC associate editor went from milking cows on a dairy farm to analyzing kinases in the lab.